40 research outputs found

    Information archival and reuse: drawing conclusions from the past

    Get PDF
    Over the last few decades design researchers have put forward theories and proposed methodologies that increase the chance that a design team will reliably arrive at the optimal solution to a given design problem. Studies, however, bear out that theories and methodologies alone will not guarantee an optimal or even good design solution. Instead, a breadth of knowledge across multiple engineering domains and the time and tools to thoroughly evaluate the design space are as important as any prescriptive design method. This work presents a set of underlying engineering technologies to define, archive and reuse product design knowledge to provide a breadth of domain knowledge for designers and to leverage artificial intelligence approaches to thoroughly, if not exhaustively, search the design space. Specifically, a database schema and entry application for a prototype design repository of product design knowledge is formulated and implemented. A real-time, knowledge basedriven, function-based conceptual design algorithm known as the morphological search is formulated to extract information from the design repository and support a thorough exploration of the design space for solutions. Currently, the Design Engineering Lab\u27s prototype Design Repository contains design knowledge for over 125 products and has over 300 user accounts representing 17 different countries. With the foundational repository elements in place, artificial intelligence methods are employed to generate a natural language to formal component naming terms thesaurus as part of a novel form-initiated concept generation approach. The approach, known as Form Follows Form, automatically generates a functional model based upon an initial component solution seed to a design problem. With a functional model in hand, established automated concept generation algorithms are employed to return more complete and varied solutions following a thorough search of the design space --Abstract, page iv

    A Model of Function-Based Representations

    Get PDF
    The need to model and to reason about design alternatives throughout the design process demands robust representation schemes of function, behavior, and structure. Function describes the physical effect imposed on an energy or material flow by a design entity without regard for the working principles or physical solutions used to accomplish this effect. Behaviors are the physical events associated with a physical artifact (or hypothesized concept) over time (or simulated time) as perceived by an observer. Structure, the most tangible concept, partitions an artifact into meaningful constituents such as features, Wirk elements, and interfaces in addition to the widely used assemblies and components. The focus of this work is on defining a model for function-based representations that can be used across various design methodologies and for a variety of design tasks throughout all stages of the design process. In particular, the mapping between function and structure is explored and, to a lesser extent, its impact on behavior is noted. Clearly, the issues of a function-based representation\u27s composition and mappings directly impact certain computational synthesis methods that rely on (digitally) archived product design knowledge. Moreover, functions have already been related to not only form, but also information of user actions, performance parameters in the form of equations, and failure mode data. It is essential to understand the composition and mappings of functions and their relation to design activities because this information is part of the foundation for function-based methods, and consequently dictates the performance of those methods. Toward this end, the important findings of this work include a formalism for two aspects of function-based representations (composition and mappings), the supported design activities of the model for function-based representations, and examples of how computational design methods benefit from this formalism

    Product Family Design Knowledge Representation, Aggregation, Reuse, and Analysis

    Get PDF
    A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In current practice, information captured while designing products in a family is often incomplete, unstructured, and is mostly proprietary in nature, making it difficult to index, search, refine, reuse, distribute, browse, aggregate, and analyze knowledge across heterogeneous organizational information systems. To this end, we propose a flexible knowledge management framework to capture, reorganize, and convert both linguistic and parametric product family design information into a unified network, which is called a networked bill of material (NBOM) using formal concept analysis (FCA); encode the NBOM as a cyclic, labeled graph using the Web Ontology Language (OWL) that designers can use to explore, search, and aggregate design information across different phases of product design as well as across multiple products in a product family; and analyze the set of products in a product family based on both linguistic and parametric information. As part of the knowledge management framework, a PostgreSQL database schema has been formulated to serve as a central design repository of product design knowledge, capable of housing the instances of the NBOM. Ontologies encoding the NBOM are utilized as a metalayer in the database schema to connect the design artifacts as part of a graph structure. Representing product families by preconceived common ontologies shows promise in promoting component sharing, and assisting designers search, explore, and analyze linguistic and parametric product family design information. An example involving a family of seven one-time-use cameras with different functions that satisfy a variety of customer needs is presented to demonstrate the implementation of the proposed framework

    Simulation-Based Investigation of a Model for the Interaction Between Stellar Magnetospheres and Circumstellar Accretion Disks

    Full text link
    We examine, parametrically, the interaction between the magnetosphere of a rotating, young stellar object (YSO) and a circumstellar accretion disk using 2.5-D (cylindrically symmetric) numerical magnetoydrodynamic simulations. The interaction drives a collimated outflow, and we find that the jet formation mechanism is robust. For variations in initial disk density of a factor of 16, variations of stellar dipole strength of a factor of 4, and for various initial conditions with respect to the disk truncation radius and the existence of a disk field, outflows with similar morphologies were consistently produced. Secondly, the system is self-regulating, where the outflow properties depend relatively weakly on the parameters above. The large scale magnetic field structure rapidly evolves to a configuration that removes angular momentum from the disk at a rate that depends most strongly on the field and weakly on the rotation rate of the foot-points of the field in the disk and the mass outflow rate. Third, the simulated jets are episodic, with the timescale of jet outbursts identical to the timescale of magnetically induced oscillations of the inner edge of the disk. To better understand the physics controlling these disk oscillations, we present a semi-analytical model and confirm that the oscillation period is set by the spin down rate of the disk inner edge. Finally, our simulations offer strong evidence that it is indeed the interaction of the stellar magnetosphere with the disk, rather than some primordial field in the disk itself, that is responsible for the formation of jets from these systems.Comment: Accepted by ApJ; 34 pages, including 12 figures and 3 table

    Transmission probabilities and the Miller-Good transformation

    Full text link
    Transmission through a potential barrier, and the related issue of particle production from a parametric resonance, are topics of considerable general interest in quantum physics. The authors have developed a rather general bound on quantum transmission probabilities, and recently applied it to bounding the greybody factors of a Schwarzschild black hole. In the current article we take a different tack -- we use the Miller-Good transformation (which maps an initial Schrodinger equation to a final Schrodinger equation for a different potential) to significantly generalize the previous bound.Comment: 10 pages. V2: Now 15 pages. Significantly expanded with examples and applications. Matches published versio

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore